Tropical Ice Water Amount and Its Relations to Other Atmospheric Hydrological Parameters as Inferred from Satellite Data
نویسندگان
چکیده
An over-ocean ice water path (IWP) algorithm, using satellite Special Sensor Microwave Water Vapor Sounder (SSM/T-2) data, is presented for clouds during the Tropical Oceans Global Atmosphere Coupled Ocean–Atmosphere Response Experiment. In developing the retrieval algorithm, clouds are first divided into 10 classes based on their top temperatures and microwave radiative properties. Radiative transfer model simulations are then performed for the different classes to establish a relation between IWP and the depression of 150-GHz brightness temperature. Correction to the effect of supercooled liquid water is done by incorporating data of liquid water path (LWP) retrievals from Special Sensor Microwave/Imager (SSM/I) and relative humidity profiles from the European Centre for Medium-Range Weather Forecasts analyses. The algorithm retrievals are compared with the analyses in the International Satellite Cloud Climatology Project (ISCCP) dataset. By using collocated SSM/T-2, SSM/I, and ISCCP data, the relations among IWP and other atmospheric hydrological properties including cloud-top temperature, LWP, rainfall rate, and precipitable water are investigated. The results indicate that IWP tends to increase with the decrease of cloud-top temperature and this correlation is particularly evident for precipitating clouds. LWP retrieved for nonprecipitating clouds has a similar tendency but only for those with top temperatures warmer than 08C. There is no clear relation between IWP and LWP. The ratio of IWP to total condensed water (IWP 1 LWP) for nonprecipitating clouds seems to be negatively correlated with cloudtop temperature on an average of a large data volume, but this relationship differs substantially among individual cases. Rainfall rate has a strong correlation with IWP. High values of IWP and LWP are always associated with high precipitable water although high precipitable water does not automatically correspond to high IWP or high
منابع مشابه
Hydrological Cycle And
The atmospheric hydrological cycle is compared for diierent time slices of the late Quaternary. Simulations have been conducted with an atmospheric circulation model at T42 resolution, and we have performed a global evaluation of the atmospheric water vapor transport. The water export from the Atlantic catchment area, important for driving the large-scale thermohaline ocean circulation, is anal...
متن کاملCalculating of Radiosonde Precipitable water using MODIS Satellite images in Goorganrood basin
Deficiency of atmospheric water vapor profile data is one of most important problems in the flood hazard researches for areas flooding such as Goorganrood basin, because of no radiosonde stations. With the aim of radiosonde data generation retrieved radiance MODIS data, after Geometric and radiometric corrections, on 21 and 8 august 2005 from MODIS-Level 1, In order to make spatial TPW maps of ...
متن کاملThe Sensitivity of the Tropical Hydrological Cycle to ENSO
Satellite observations of temperature, water vapor, precipitation and longwave radiation are used to characterize the variation of the tropical hydrologic and energy budgets associated with the El Niño–Southern Oscillation (ENSO). As the tropical oceans warm during an El Niño event, the precipitation intensity, water vapor mass, and temperature of the tropical atmosphere are observed to increas...
متن کاملStatistical downscaling of GRACE gravity satellite-derived groundwater level data
With the continued threat from climate change, population growth and followed by increasing water demand, the need for hydrological data with high spatial resolution and proper time coverage to be felt more than ago. Therefore, having data such as terrestrial water storage changes and groundwater level changes with high resolution spatial helps to plan and make decisions for water resource mana...
متن کاملCloud Macro- and Microphysical Properties Derived from GOES Over the ARM SGP Domain
Cloud macrophysical properties such as fractional coverage and height zc, and microphysical parameters such as cloud liquid water path (LWP), effective droplet radius (re), and cloud phase, are key factors affecting both the radiation budget and the hydrological cycle. Satellite data have been used to complement surface observations from the Atmospheric Radiation Measurement (ARM) Program by pr...
متن کامل